78 research outputs found

    Influence of physical seed treatment on seed quality improvement in black gram (Vigna mungo L.)

    Get PDF
    Pelleting is a physical pre-sowing seed management technique, in which seeds are enclosed with biopromotive substances to improve the field stand. To evaluate the efficacy of plant herbal powders for seed pelleting, studies were initiated with blackgram cv. ADT 3, in which seeds were pelleted with the leaf powders of noni (Morinda citrifolia) and basil (Ocimum sanctum) and fruit powder of gallnut (Terminalia chebula) @ 200 g kg-1 of seed using Carboxy methyl cellulose @ 200 ml per kilogram of seed as an adhesive. The results revealed that seeds pelleted with the leaf powders of either basil improved the seed germination by 6% and seedling vigour (23%), seedling length (9%) and seedling dry weight (5%). In raised bed nursery, the seeds pelleted with basil leaf powder @ 200 g kg-1 of seed recorded improved field emergence (7%) with higher chlorophyll index (30%) and nodule number (28%) highlighting the efficacy of the treatment. While, the seeds pelleted with gallnut fruit powder recorded lowest germination, vigour and field emergence which is significantly lesser than control. The delayed emergence, germination and vigour was due to the increase in hardiness of gallnut powder pelleted seed. Thus, the seeds treated with basil leaf powder @ 200 g kg-1 using carboxy methyl cellulose @ 200 ml per kilogram of seed as an adhesive, enhanced seed germination, vigour, seedling length and dry weight

    Study of Seed Orientation in Different Depths in Jatropha Curcas L.

    Get PDF
    Seeds were sown in three orientations (Radicle downwards, radicle upwards and flat position) at four different depths (1, 2, 3 and 4 centimeters) to improve the germination on Jatropha curcas. The results revealed that sowing seed at 2 centimeter depth with radical downwards position enhanced the production of normal seedling and the germination percentage (85%). Compare to radicle downward and flat position of seed at different depth of sowing, speed of emergence and abnormal seedling existence were lower and higher respectively in radicle upward position of seeds with 4 centimeter depth

    Structure and Reactivity of Halogenated GC PNA Base Pairs – A DFT Approach

    Get PDF
    The present study explored the structural and reactivity relationship of halogenated G-C PNA base pairs using density functional theory (DFT) calculations. The halogens such as F, Cl, and Br are substituted by replacing H atoms involved in H-bonds of the base pairs. All structures were optimized using the B3LYP/6-311++G** theory level, and positive frequencies confirmed their equilibrium states. To understand the structural variations of the considered halogenated systems, the bond distances of R─X, R─H, and X/H•••Y and the bond angles of R─X•••Y were analyzed. The obtained structural parameters and interaction energies are comparable with the previous theoretical reports. In addition, the interaction energies (Eint) and quantum molecular descriptors (QMD) are also calculated to understand the difference between halogenated PNA systems and their non-halogenated counterparts. In this study, the enhancement in the reactivity properties  of halogenated PNA systems has been demonstrated, which indicates their improved responsive characteristics in various chemical reactions. Based on the available results, the halogenated PNA systems, carefully considering their substitutional position, facilitate better accommodation for the triplex formation of dsDNA/dsRNA. Therefore, it is concluded that the improved reactivity properties of halogenated PNA base pairs would make them potential candidates for various biological applications

    ASIC Implementation of Multiplexer Based DAA

    Get PDF
    ABSTRACT: In Digital Image Processing Point, Line and Edge detection are performed through software approach. The proposed Architecture performs these operations through hardware approach using Distributed Arithmetic. Distributed arithmetic (DA) has been widely used to implement inner product computations with fixed inputs. Conventional ROM-based DA suffers from large ROM requirements. To reduce the memory requirements, Adder based DA uses pre-defined structure for computation. But both the methods are suitable only if at least one input is constant. This project aims to implement a new Distributed Arithmetic Architecture for point detection, line detection and edge detection in DIP when both the inputs are variable. The new architecture is termed as Multiplexer based Distributed Arithmetic (MUX based DA). The proposed architecture takes the advantage of Multiplexer and DA for inner product computations when both the inputs are variable. In addition it reduces ROM requirement and complexity in constructing Adder based architecture for higher order inputs. Here, the performance of proposed Architecture with ROM based DA, Adder based DA and with multiplier based implementation are compared. The MUX based DA reduces power up to 81% and needs 40% of area as compared with multiplier based implementation. KEYWORDS: ROM based DA,ADDER based DA,MULTIPLEXER based DA, CADENCE 180nm Technology. I.INTRODUCTION Distributed Arithmetic (DA) has been widely adopted for its computational efficiency in many digital signal processing applications. The most frequently used form of computation in digital signal processing is a sum of products which is dot-product or inner-product generation. DA is generally abit-serial computation operation that forms a product of two vectors in one clock cycle. The typical applications include DCT, DFT (Discrete Fourier Transform), FIR (Finite Impulse Response), and DHT (Discrete Hartley Transform) which can be found in main stream multimedia standards and telecommunication protocols. The advantage of DA is its special non multiplication mechanization which uses adder replacing multiplication and therefore simplifies the hardware implementation. The idea behind the conventional DA, called ROM based, is to replace multiplication operations by pre-computing all possible values and storing these in a ROM. The Adder based DA uses a fixed architecture which can be obtained by distributing fixed variable is used for inner product computation. The DA technique distributes arithmetic operation rather than lumps themas multipliers do. Conventional DA called ROM based DA decomposes the variable input of the inner product into bit level to generate pre-computed data.ROM based DA uses a ROM table to store the pre-computed data, which makesit regular and efficient in silicon area in VLSI implementation. However, when the size of the inner product increases the ROM area increases exponentially and becomes impractically large, even using ROM partition. In contrast to conventional DA, Adder based DA decomposes the other operand of inner product into bit level, distributes the multiplication operation, and shares the common summation terms .The adder based DA exploits the distribution of binary value pattern and may maximize the hardware sharing possibility in the implementation. Although the Adder based DA requires less hardware area and smaller computation cycle time than ROM based DA, both the existing method operates only on one input as fixed but the proposed MUX base DA computes result with both the input as variable as same as MAC. The direct implementation of the filter requires more number of resources, to reduce the number of resources Distributed Arithmetic came into existence which replaces multiplications by additions and siftings. The proposed DA algorithm came into existence which uses multiplexers to remove the usage of ROM memory and complexity in constructing fixed architecture for higher order inputs. The proposed MUX based D

    Exposures to Airborne Particulate Matter and Adverse Perinatal Outcomes: A Biologically Plausible Mechanistic Framework for Exploring Potential Effect Modification by Nutrition

    Get PDF
    OBJECTIVES: The specific objectives are threefold: to describe the biologically plausible mechanistic pathways by which exposure to particulate matter (PM) may lead to the adverse perinatal outcomes of low birth weight (LBW), intrauterine growth retardation (IUGR), and preterm delivery (PTD); review the evidence showing that nutrition affects the biologic pathways; and explain the mechanisms by which nutrition may modify the impact of PM exposure on perinatal outcomes. METHODS: We propose an interdisciplinary conceptual framework that brings together maternal and infant nutrition, air pollution exposure assessment, and cardiopulmonary and perinatal epidemiology. Five possible albeit not exclusive biologic mechanisms have been put forth in the emerging environmental sciences literature and provide corollaries for the proposed framework. CONCLUSIONS: Protecting the environmental health of mothers and infants remains a top global priority. The existing literature indicates that the effects of PM on LBW, PTD, and IUGR may manifest through the cardiovascular mechanisms of oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. PM exposure studies relating mechanistic pathways to perinatal outcomes should consider the likelihood that biologic responses and adverse birth outcomes may be derived from both PM and non-PM sources (e.g., nutrition). In the concluding section, we present strategies for empirically testing the proposed model and developing future research efforts

    Oligomeric Structure of the MALT1 Tandem Ig-Like Domains

    Get PDF
    Mucosa-associated lymphoid tissue 1 (MALT1) plays an important role in the adaptive immune program. During TCR- or BCR-induced NF-κB activation, MALT1 serves to mediate the activation of the IKK (IκB kinase) complex, which subsequently regulates the activation of NF-κB. Aggregation of MALT1 is important for E3 ligase activation and NF-κB signaling.Unlike the isolated CARD or paracaspase domains, which behave as monomers, the tandem Ig-like domains of MALT1 exists as a mixture of dimer and tetramer in solution. High-resolution structures reveals a protein-protein interface that is stabilized by a buried surface area of 1256 Å(2) and contains numerous hydrogen and salt bonds. In conjunction with a second interface, these interactions may represent the basis of MALT1 oligomerization.The crystal structure of the tandem Ig-like domains reveals the oligomerization potential of MALT1 and a potential intermediate in the activation of the adaptive inflammatory pathway.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    Get PDF
    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs

    Study of Seed Orientation in Different Depths in Jatropha Curcas L.

    Get PDF
    Seeds were sown in three orientations (Radicle downwards, radicle upwards and flat position) at four different depths (1, 2, 3 and 4 centimeters) to improve the germination on Jatropha curcas. The results revealed that sowing seed at 2 centimeter depth with radical downwards position enhanced the production of normal seedling and the germination percentage (85%). Compare to radicle downward and flat position of seed at different depth of sowing, speed of emergence and abnormal seedling existence were lower and higher respectively in radicle upward position of seeds with 4 centimeter depth
    corecore